Tue, 28 March 2017
This is an episode featuring Dr Paul Wischmeyer (@Paul_wischmeyer) who is a doctor at the Department of Anesthesiology and Duke Clinical Research Institute, Duke University Medical Center. I noticed he had tweeted about a presentation (Surviving the ICU-The Patient Experience: What Patients Need Their Doctors to Know) he gave which was available on YouTube and having watched it felt that others would appreciate hearing it too.I asked him if he would mind me producing it as a podcast to which he happily consented. I hope you find it valuable too. Interview Questions for Advanced Critical Care Practitioners The Content on the website is provided for FREE as is the podcast. You could help support this work by going to Amazon via this link. This means that I will earn a small commission from any purchases you make with NO extra cost to yourself. Thank you. Amazon Link |
Wed, 22 March 2017
This is a very interesting chat I had with Dr Bronwen Connolly who is a Consultant Clinical research Physiotherapist and an NIHR post-doctoral research fellow about early mobilisation in the critical care. She was asked to present at the ICS SOA 2016 to summarise key evidence published in 2016 examining physical rehabilitation in critical illness and also consider methodological trial design features in interpretation of results. It would seem from the discussion that one of the main problems with the research is that there is no agreement on the end points which should be measured. Some of the papers discussed were: Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial Interview Questions for Advanced Critical Care Practitioners |
Fri, 3 March 2017
In this podcast episode, Gavin Denton and I look at three recent papers, breaking them down to try to help us and you understand some of their conclusions and how they reached them. Our notes can be found below. Dynamic light application therapy to reduce the incidence and duration of delirium in intensive care patients: a randomised controlled trial.Simons et al The Lancet 2016 Clinical Question Continuous bright light therapy, delivered through a ceiling-mounted lighting system, in addition to regular lighting and daylight, would reduce the incidence and duration of ICU-acquired delirium. Design Single-centre, randomised, controlled trial. Setting ICU of the Jeroen Bosch Hospital in ’s-Hertogenbosch, Netherlands. Population Inclusion criteria: All consecutive ICU patients admitted to the ICU between July 1, 2011, and Sept 9, 2013, were screened for eligibility. Patients had to be 18 years or older with an expected ICU stay of at least 24 h. Exclusion criteria: Those whose anticipated life expectancy was less than 48 h or who could not be assessed for delirium (eg, severe hearing or visual impairment, unable to understand Dutch, or severe mental impairment). Intervention A bright lighting system was installed into the ceiling of every ICU room. 800–1000 lux bluish-white light at the level of the patients’ heads, in line with previous reports that had showed effects with lighting therapy. Mean illuminance was calculated for each patient per hour for the duration of his or her stay in the ICU. The lighting system was controlled from a central module, located in the nursing station, which was only accessible by the investigators. For patients in the DLA group, lighting level and colour temperature rose from 0700 h onwards to peaks at 0900 h. This light intensity was maintained until 1130 h. To allow patients a period of rest, in accordance with normal daily practice in the ICU, the lighting level was decreased until 1330 h. From 1330 h onwards, the level was again increased and was maintained until 1600 h, after which a gradual fall occurred over 1 h. At 2230 h the light was switched off automatically. Control Patients in the control group were exposed to the standard lighting settings of 300 lux and 3000 K. The light could be turned on and off in the room and could be changed to a bright setting of 1000 lux for procedures. Cumulative incidence of delirium was defined as the presence of delirium (at least one positive CAM-ICU screening) on at least 1 day during ICU stay. The number of delirium-free and coma-free days in 28 days was calculated by subtracting the number of days patients had delirium or were comatose from 28. Patients were deemed to be comatose when the CAM-ICU could not be scored and the Richmond Agitation Sedation Scale score was lower than –3 for the whole day. All days without both conditions were defined as delirium-free and coma free days. When a patient had been free from delirium for 48 h since a positive CAM-ICU score, the delirium was judged to have resolved and the 2 days were recorded as delirium free. To detect differences in the effects of DLA and standard lighting settings on circadian rhythm, concentrations were measured of the melatonin metabolite 6-sulfatoxymelatonin and the stress hormone cortisol in urine. 6-sulfatoxymelatonin is a reliable proxy for melatonin secretion, and in healthy individuals, concentrations rise in the evening and peak during the night. Cortisol concentrations are normally low during the night but rise in the early morning and peak at the time of awakening. Outcome Primary outcome: The primary outcome measure was the cumulative incidence of ICU-acquired delirium. Secondary outcomes: Secondary outcome measures were:
Results Delirium occurred in 137 (38%) of 361 patients in the DLA group and 123 (33%) of 373 in the control group (odds ratio 1⋅24, 95% CI 0⋅92–1⋅68, p=0·16 ). The median numbers of delirium-free and coma-free days in 28 days were similar in the two groups. No association between the cumulative illuminance and the cumulative incidence of delirium. When patients with early delirium were excluded, the median time to development of delirium was 4·4 days (IQR 2–6) in the DLA group and 4·0 days (2–7) in the control group (p=0·84). Among all patients with delirium, the median number of delirium-free and coma free days in 28 days was 20 (IQR 8–24) in the DLA group and 17 (7–25) in the control group (p=0·96). Patients with delirium were:
Patients with delirium had significantly longer stays in the ICU and hospital than those without, but mortality did not differ. The percentage of patients who received mechanical ventilation, the duration of mechanical ventilation, use and types of sedatives, and use and cumulative amount of administered haloperidol did not differ significantly between the DLA and control groups. Absence of sedation had no effect on delirium incidence (DLA group 17 [16%] of 105 vs control group 11 [10%] of 110, odds ratio 1⋅74, 95% CI 0⋅77–3⋅91, p=0·13) or the median number of delirium-free and coma-free days in 28 days (p=0·98). Authors’ Conclusions DLA delivered greater light exposure during patients’ ICU stays than did normal lighting, but the additional exposure did not reduce the cumulative incidence of ICU-acquired delirium. Furthermore, no differences were found for any of the secondary endpoints. Some reasons why this study finds differently to those studies done in other environments. First, in contrast to non-critically ill patients, most patients in the study were sedated and had their eyes closed during the acute disease phase. Since light exerts its effect on the biological clock by modulation of retinal input through photosensitive ganglion cells, closed eyes could have prevented some biological effects. Second, sedatives can disturb the normal circadian rhythm, which might have counterbalanced the effects of lighting therapy. Again, therefore, effects of lighting therapy might only have been expected after the acute disease phase was over and the patient was awake. For patients who received no sedatives during their ICU stay there were also no differences in outcomes between study groups. Is there a direct relationship between improved sleep and prevention of delirium? This is not known to be clear. It could be that disturbed circadian rhythms and delirium might be caused by brain inflammation which can occur in sepsis, trauma or MI for example. So ICU patients might be less susceptible than non-ICU patients to external cues such as daylight exposure. Concentrations of melatonin or its urinary metabolite 6-sulfatoxymelatonin vary widely within and between ICU patients, and are affected to notable degrees by mechanical ventilation, adrenergic drugs, and sepsis. Strengths High adherence rate Adequately powered Regular measurements and fixed lighting schedule. Weaknesses Single centre study. Blinding not possible Did not/could not measure sleep- difficult to measure. CAM-ICU single determination sensitivity is low.
Video laryngoscopy versus direct laryngoscopy for adult patients requiring tracheal intubation.Lewis et al. Cochrane Database of Systematic Reviews, 2016.
Clinical question. In patients requiring oral tracheal intubation, does the use of video laryngoscopy compared to traditional direct laryngoscopy techniques, reduce complications and failed intubation rates? Design.
Setting
Population.
Intervention/control.
Outcome. Primay outcomes.
Secondary outcomes.
Author’s conclusion. In patients with a predicted or difficult airway, VL may decrease the rate of failed intubation compared to DL.
Strengths.
Weaknesses.
Bottom line. Base on data available up to February 2015, VL decreases failed intubation where the airway is predicted or found to be difficult.
Efficacy of High-Flow Nasal Cannula Therapy in Intensive Care Units: A Meta-Analysis of Physiological and Clinical Outcomes
Authors Liesching et al Clinical Question A meta-analysis to compare the physiological and clinical outcomes of high-flow nasal cannula (HFNC) with standard oxygen (O2) or conventional noninvasive ventilation (NIV) in intensive care units (ICUs). Design Meta analysis Search terms
Excluded reviews/paediatrics/non ICU/non comparative/retrospective studies. Identified 18 prospective studies. Eleven articles are trials and seven are prospective comparative studies. Results In summary, the diagnoses include: 1253 (63.8%) cardiac or cardiothoracic surgeries, 359 (18%) pneumonia, 30 (1.5%) ARDS, 18 (0.9%) sepsis, 17 (0.8%) cardiogenic pulmonary edema, and 327 (16%) others.
Significant differences Respiratory rate The pooled t test shows a trend of lower RR in the HFNC group than the standard O2 group (21.6 vs 24.7,P=.059). Excluding CCU patients resulted in a more significant improvement (22.0 vs 25.6,P=.039). Heart rate The pooled t test shows a significantly lower HR in the HFNC group than the standard O2 group (89.1 vs 98.4,P=.033). Excluding CCU patients resulted in a more significant improvement (88.4 vs100.0,P=.013). Arterial Blood Gas PaO2 The pooled t test shows a significantly higher PaO2 in the HFNC group than the standard O2 group (104.5 vs 90.0 mm Hg,P=.044). Excluding CCU patients resulted in a more significant improvement (109.4 vs 91.4 mm Hg,P=.015) Dyspnea Score The pooled t test shows a significantly lower dyspnea score in the HFNC and standard O2 groups(2.7 vs 4.3,P=.046). Excluding CCU patients also resulted in a significantly lower dyspnea score (2.8 vs 4.6,P=.045). Discomfort score The sample size–adjusted pooled t test shows no significant difference in discomfort score when using HFNC versus standard O2 (1.19 vs 1.44, P 1⁄4 .435). Excluding CCU patients resulted in a significantly lower discomfort score in the HFNC group (0.98 vs1.96, P 1⁄4 .028). Intubation or Reintubation Rate The OR calculated from total sample size shows no different intubation rate in the HFNC and standard O2 groups(OR=0.79, 95%CI: 0.39-1.21,P=.269). Excluding CCU patients resulted in a significantly lower intubation rate (OR=0.59, 95%CI: 0.37-0.97,P=.036). In the table at the bottom of Figure 11, no difference in intubation rates was observed when comparing HFNC with NIV (OR=0.83, 95%CI: 0.62-1.11,P=.216). However, excluding CCU resulted in a significantly lower intubation rate (OR=0.58, 95%CI: 0.35-0.95,P=.032). No significant differences Arterial Blood Gas: Oxygen Saturation Arterial Blood Gas: PaO2/FIO2 Arterial Blood Gas: PaCO2 Arterial Blood Gas: pH Dryness Pulmonary function Intensive care unit mortality ICU length of stay Hospital length of stay
Authors’ Comments and Conclusions A high degree of heterogeneity across all the studies. 64% of the sample size is contributed by post cardiac or cardiothoracic surgery. When excluding CCU patients, a majority of patients were diagnosed with pneumonia. For this subgroup of patients, the RR, HR, PaO2, dyspnea, and discomfort score were significantly improved with HFNC comparing to standard O2. For patients with pneumonia, the HFNC group also showed better clinical outcomes including a significantly lower intubation rate, a trend of lower ICU mortality, and a shorter ICU length of stay, comparing to standard O2. Comparing with NIV, only when excluding CCU patients, the limited data showed better clinical outcomes including lower intubation rate and ICU mortality in the HFNC group.
Interview Questions for Advanced Critical Care Practitioners The Content on the website is provided for FREE as is the podcast. You could help support this work by going to Amazon via this link. This means that I will earn a small commission from any purchases you make with NO extra cost to yourself. Thank you. Amazon Link[table id=1 /] [Stitcher_Radio_Logo] [get_in_touch_with_jonathan]
|